真相揭秘:钠和钾遇水的瞬间
钠是一种银白色的金属,室温下较软。与水接触时便生成氢氧化钠和氢气。而钾遇到水时的反应更加剧烈。这些反应会释放出大量的热,因此,之前人们总会理所当然地认为燃烧和爆炸都源自氢气被点燃的过程。
琼沃思指出, 要发生剧烈程度足以产生爆炸的化学反应,前提条件是反应物之间要迅速、高效地混合。然而,在碱金属与水反应时,迅速生成的气体应该会形成一层“气体膜”,包覆在碱金属表面,将碱金属与水隔绝开。这种情况下,没有了水的接触就断绝了氢气的“来源”,反应应该趋于逐渐减缓,但我们看到的现象却并非如此。
琼沃思的同事菲利普·梅森(Philip Mason)决定通过实验找出爆炸的真实原理。在开始的实验中,他使用了固体的金属钠,不过有时候金属钠的表面会在空气中被氧化,被氧化的部分遇水并不会发生非常剧烈的反应。为了更好地观察剧烈的“爆炸”反应,梅森最终使用了一种在室温下为液态的钠钾合金进行实验。
借助高速摄像机,研究者们得到了反应初期具体机制的线索。他们发现,在钾钠合金液滴从注射器滴入水中后不到1毫秒的时间内,反应便开始了。在短短的0.4毫秒后,合金液滴表面就开始向外喷射,形成“尖刺”状。这个“爆炸”过程发生得实在太快了,因此它不可能是由反应放热引发的。更重要的是,高速摄影机拍到的影像显示,在0.3~0.5毫秒之间,在这个带有“尖刺”的金属液滴周围,局部水溶液呈现出了深蓝色和紫色。
▲实验中拍摄到的钠钾合金液滴入水时的变化,右侧为作为对照的水滴
琼沃思的同事弗兰克·尤利格(Frank Uhlig)利用计算机模拟了由19个钠原子组成的原子簇的反应,在此之后,上述现象背后的原因终于得以显现:这些原子簇表面的钠原子会在几皮秒(10-12秒)的时间内就失去一个电子,而这些电子会跑到周围的水里面,并被水分子包围,形成“溶剂化电子”(Solvated electron)。
此前科学家们就已经发现,在水中溶剂化的电子会呈现出深蓝色,这种现象短暂地出现在之前捕获的影像中。而当这些电子离开金属进入水中时,钠原子簇就变成了一堆带正电的钠离子。这些离子彼此之间会产生强烈的排斥,这种排斥力转化为动能,由此就引发了“库伦爆炸”(Coulomb explosion)。
密歇根州立大学无机化学家詹姆斯·戴伊(James Dye)表示:“我已经进行了许多次这样的实验展示,我也很想知道究竟为什么金属钠会在水面上‘跳舞’,而金属钾则会发生‘爆炸’。这篇论文对这一反应的早期阶段给出了完整而有趣的解释。”返回搜狐,查看更多